
Analyzing mathematical models with MATLAB:

numerically integrating ordinary differential

equations and simulating stochastic systems

Contents

1 Motivation 3

2 A “Hello World!” differential equation 3

2.1 Absolute and relative tolerance 5

3 Bacterial growth curves 6

3.1 Differential equation . 6

3.2 Fixed points . 8

3.2.1 Physics analogy . 10

3.3 Parameter estimation by data fitting 10

4 Polymer growth model / prion dynamics 13

5 Translation of mRNA 14

5.1 Fixed point and response time 16

5.2 Phase plane analysis . 17

6 Mutual inhibition 17

7 Discrete stochastic systems 20

7.1 A memoryless elementary chemical reaction leads to a

random walk . 20

8 Bacterial growth 22

8.1 Chemical master equation . 22

8.2 Exact simulation . 24

CONTENTS 2

9 Translation of mRNA 25

10 The prion model – a nonlinear system with feedback 27

11 Microtubule dynamics 28

CONTENTS 3

1. Motivation

In order to get a quantitative understanding of a given biological process,

it is necessary to come up with a mathematical description of the process

we have in mind. Give such a mathematical model, we have to analyze it

in order to gain some understanding. Using a computer, even complicated

looking things like multidimensional differential equations or stochastic

systems can be analyzed numerically, in a surprisingly straightforward

manner. This tutorial will be all about getting a handle on mathematical

models by analyzing them using MATLAB.

Boxed expressions indicate stuff for you to do.

Bridging the language barrier from mathematics to biology and vice versa can

be hard. It’s possibly the biggest obstacle to overcome, but the rewards can

be staggering and make it all worth it. When spending a lot of much time on

one side of the fence it’s useful to remind ourselves that not one side trumps

the other. Clearly it’s all hand in hand. Don’t ever get involved in trying to

settle what’s more important! The grand goal is clear for this kind of course

which is often hailed as bringing together physics and biology: we’re not

aiming for inter-disciplinarity but for non-disciplinarity! This course is part

of that aim and will introduce some of the basic concepts that can be used to

gain insights into mathematical descriptions of biological processes. It will

be a starting point to “get your hands dirty with MATLAB”.

2. A “Hello World!” differential equation

If you have gone through the first steps of programming a computer before,

you will probably have seen a “Hello World!” example of a program. This

section will introduce an equivalent differential equation.

So let’s start by addressing the following question. Under appropriate

conditions an E. coli cell will divide every 20 minutes. If you put ten E. coli

cells into their favorite medium with lots of nutrients and space to grow at

noon, how many cells will be there just after midnight when you come back

rob
Inserted Text
n

rob
Cross-Out

rob
Replacement Text
-

CONTENTS 4

from the Captain Kidd (assuming that crowding is not an issue)?

Well, you can calculate the answer pretty much directly, but let’s hold

that off for a moment and try to formulate the problem as a differential

equation describing the number of cells x as a function of time t. Since

bacteria are self-replicating the rate of change of x(t) is proportional to x(t),

which is captured by the following differential equation

dx
dt
= bx . (1)

The solution to this differential equation is of course an exponential of the

form

x(t) = x0ebt , (2)

where x0 is the number of bacteria at time t = 0. But even if we did not know

the analytical solution we could simply integrate the differential equation

for the starting point x0 = 10 and b = ln 2/20 min−1 until the final time point

t = 12 × 60 min.

Relate the birth rate b and the doubling time using (2).

Note that integrating a differential equation numerically is easy. All you

need to do is to specify the parameters and initial conditions and off you

go. Really complicated, non-linear equations can be as straightforward as

easy ones. However, finding general properties of solutions, such as limits,

minima and other parameter-dependent results is not really possible with

numerical solutions. For that kind of understanding we need to gain ana-

lytical insights.

Also note that in the above we simply glanced over the question of how

a microscopic, discrete and possibly stochastic (the population of cells will

not divide synchronously) process can lead to macroscopic, continuous and

deterministic time evolution. The relation between the two will be discussed

in greater detail in the latter part of this tutorial.

CONTENTS 5

So the task at hand is to write a program that integrates the differential

equation numerically. Fortunately MATLAB has various very powerful

ODE‡ solvers built in which we can make use of. So writing an M-file

will simply consist of defining the ODE and calling the built in ODE solver

to determine the result of the numerical integration. (As explained in the

general introduction, make sure your working directory in which you save

your M-files and the path that MATLAB searches for M-files agree!).

Write an M-file that integrates equation (1) and plot the solution

x(t) in linear and logarithmic scale.

If you have some previous MATLAB experience, try to write the M-file from

scratch, using the built-in function ode23t. For information about the imple-

mentation of the integration routine use the built in help menu help ode23t.

Otherwise you can go to your work directory and look at

the file bacterial_explosion_ode.m which defines a function whose

output is the right hand side of equation (1) and the script

script_bacterial_explosion.m which calls the ode solver to nu-

merically integrate the differential equation. Executing the script

script_bacterial_explosionwill result in x and t to be vectors containing

the respective values xi, ti for xi = x(ti) and will also generate the correspond-

ing plots.

Redo the calculation for the case in which you accidentally

left your bacteria growing for 48 h. Is your result reasonable?

(Hint: the mass of an E. coli is approximately 10−13g, and the

mass of the earth is approximately 6 × 1024kg . . .)

2.1. Absolute and relative tolerance

The absolute tolerance (“AbsTol” in the line options=odeset(’AbsTol’,

1e-6, ’RelTol’, 1e-6);) is the cutoffmeasure below which the computer

‡ ODE= ordinary differential equation. This means that the functions we’re trying to solve
for depend only on one variable, which in these examples is time.

rob
Sticky Note
From a logical point of view, I would be inclined to first explain to the reader that there is this function ode23t that one can use to do numerical integration of ODEs. Then give the exercise.

rob
Sticky Note
I claim it is a pg. Why? One E. coli is one fL in volume and assuming that the density is the same as that of water we find 1pg. Check me on that.

CONTENTS 6

thinks a value is zero. The computer could waste a lot of time following

insignificant numbers. A way the computer deals with this is to pretend

that any number smaller than a certain value is really zero (it won’t always

print it as zero but it still treats it as zero). The absolute tolerance is this

level.

Integrate equation (1) for a negative “birth rate” −b (modeling

radioactive decay) and plot the result logarithmically. Have a

careful look at the curve.

You will notice graph is no longer a perfectly straight line. Something

funny is going on. This is because the computer considers these values zero

(AbsTol was set to 1e-6) and the log of zero is undefined (and MATLAB

somehow tries to deal with that).

Change AbsTol to 1e-10 and rerun the code.

You should notice the graph looks fine /will get broken much later.

This is worth mentioning because if you are trying to model a

biologically system the (molar) concentrations will often be less than 1e-6

which is the default tolerance. You will need to make the tolerance about 10

fold less than what you expect the small value you care about will be if you

won’t to avoid getting deceived. Or better still, whenever possible rescale

your quantities by using units that lead to the numerical values to be of the

order of one.

The RelTol or relative tolerance is a measure of the accuracy each point

on the modeling graph. A RelTol of 1e-6means each point is calculated so

that its numerical error is at most one part in a million.

3. Bacterial growth curves

3.1. Differential equation

In the above example growth was unlimited, which is obviously not realistic.

At some point overcrowding will lead to competition for nutrients and will

limit the growth. The exponential growth will end in a saturation phase and

rob
Inserted Text
that the

rob
Cross-Out

rob
Replacement Text
-

rob
Cross-Out

rob
Replacement Text
-want

rob
Sticky Note
Note: here I was reusing my code with 48 hours rather than 12 hours and so saw stuff that was really messed up. I needed to change back to 12 hours to get this working really nicely.

CONTENTS 7

a bacterial growth curve such as the one depicted in figure 1 can typically be

observed. (Hang out with Rob Phillips in the latter part of the Physiology

Course for some fun measuring bacterial growth curves!).

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
O

D
 (

a
.u

.)

Time (h)

Figure 1. Typical bacterial growth curve. A growing bacterial population
is measured at various time points with the optical density (OD) as a
measure of cell density and therefore total number of cells.

Saturation effects are often modeled by introducing a death term that

competes with the birth term kx in equation (1). For the system to saturate

the death term needs to grow faster than the birth term as the number of

bacteria increases. That means it has to be non-linear. The simplest simplest

of such non-linear death terms is given by dx2, which leads to

dx
dt
= bx − dx2 . (3)

Note the above equation is motivated purely phenomenologically and not by

an understanding of the process of overcrowding that leads to the saturation.

It is therefore not clear a priori whether equation (3) is a sensible description.

Nevertheless, unless the form we have chosen is totally wrong it will capture

some aspect of the saturation effect and will at least help us to describe and

quantify bacterial growth curves.

Can you think of a possible microscopic process that leads to

events happening with a rate that is proportional to x2?

rob
Cross-Out

rob
Replacement Text
-example

rob
Sticky Note
I think d is a bad choice here just because it could confuse the novice into thinking of dx as in calculus!

CONTENTS 8

Note that most non-linear differential equations are impossible to solve

analytically (this one actually is, which is probably why it is so popular) so

numerical integration is the only way to go for many complicated systems.

Integrate equation (3) numerically for the same set of

parameters as before (i.e x0 = 10, b = ln 2/20 min−1) and

d = b × 10−10. Plot the resulting growth curve in linear and

logarithmic scale and overlay the graphs with the previous

result for unlimited growth.

In case you run into problems changing the previous M-files to solve

equation (1), in your work directory you can find the following

two M-files to guide you: bacterial_growth_ode.m which defines

a function whose output is the right hand side of equation (3),

and script_bacterial_growth_curve.m which calls the ode solver to

numerically integrate the differential equation.

3.2. Fixed points

In order to analyze differential equations it is often very useful to look at

values of x for which the system doesn’t change anymore, i.e. values of x for

which the right hand side of the differential equation becomes zero. In the

above example the so called fixed points of the system satisfy the following

quadratic equation.

0 = bx − dx2︸ ︷︷ ︸
f (x)

, (4)

which has two solutions x = 0 and x = b/d. Note that the two fixed points

don’t have the same property: one is stable and the other one is unstable.

The difference means that if the number of bacteria deviates only slightly

from zero then the whole thing will take off. Hence the time evolution of a

system with exactly zero or almost zero bacteria will look extremely differ-

ent. The fixed point (or steady state) xss = 0 is therefore called unstable. In

contrast to that is the behavior of the system for a number of bacteria close

to x = b/d, which will simply relax back into x = b/d. The fixed point (or

rob
Inserted Text
 possible to solve

CONTENTS 9

steady state) xss = b/d is therefore called stable.

Sketch f (x) and indicate the respective regions in which f (x) is

positive, and where it is negative. Does that tell you anything

about the stability of the fixed points?

The formal analysis of the evolution of deviations from the fixed points

of a system is called linear stability analysis and leads to important insights

about systems described by differential equations. It is formally done by

doing a Taylor expansion of the right hand side f (x) of the differential

equation.
dx
dt
= bx − dx2︸ ︷︷ ︸

f (x)

,

which we truncated after the linear terms such that,

f (xss + ∆x) ≈ f (xss)︸︷︷︸
0

+∆x f ′(xss) .

This leads to the following linear differential equation describing the

behavior of small deviations ∆x from the fixed point value xss

d∆x
dt
≈ ∆x f ′(xss) . (5)

We already know that the solution to the above equation is an exponential

with ∆x ∼ e f ′(xss)t. So depending on the sign of f ′(xss), a deviation is growing

exponentially or decreasing exponentially. Hence the system - if nudged a

little bit away from its fixed point - will either return to the fixed point or be

pushed away from it. Accordingly fixed points are categorized as stable or

unstable as illustrated by the physical example in the next section.

Formally show that xss = 0 is an unstable fixed point and that

xss = b/d is a stable fixed point.

Note that this kind of analysis is straightforward to extend to higher

dimensional systems (i.e. systems with more than one variable), which

we will do in later sections. Also note that in higher dimensional systems

you can have interesting things like neutrally stable fixed points around

which the system oscillates.

CONTENTS 10

3.2.1. Physics analogy Imagine the motion of a ball placed in a valley where

the height of the canyon walls h(x) is given by h(x) = x4
− 40x2, where x is

the position of the ball. Fixed points can be thought of as the positions for

which a ball – if placed there – would not move. Stable fixed points are

points where the ball would return if pushed slightly away from the fixed

point. Unstable fixed points are points where the ball would not return if

pushed slightly away from the fixed point.

Plot the function that describes the height of the valley h(x).

What are the fixed points of this system and are they stable?

3.3. Parameter estimation by data fitting

You’ll find a whole bunch of bacterial growth curves in the work folder

(growth_curveXXX.m). In this section we will address the following

questions: can you quantify growth curves, can you estimate the confidence

in the parameters you found to quantify the curves, and can you tell different

growth conditions apart?

The differential equation (3) describing population growth is one of the

few non-linear cases that can be solved analytically. Hence you don’t have

to numerically integrate the solution for a whole bunch of parameter values

to see which fits the data best, but can make use of the analytic solution

given by

x(t) =
x0ebt

1 + (ebt − 1)x0 d/b
. (6)

Fortunately MATLAB has some powerful algorithms built in to do the fitting

for you. The one that we will use is called fminsearch, which allows

for non-linear parameter fitting. Note that non-linear here means that the

parameters enter in a non-linear way, not that the function is non-linear in

t. For example fitting the function x(t) = b ∗ t + d ∗ t2 constitutes a linear fit

whereas x(t) = d+ t/d constitutes a non-linear fit. Since linear best fit results

are much more reliable than non-linear ones, it is always advantageous to

formulate your problem as a linear fit problem if possible.

rob
Sticky Note
You confused me here. Don't you have them backwards?

CONTENTS 11

Fitting a theoretical curve to data means to find a set of parameters

for which the curve follows the data as closely as possible. Usually the

closeness of the curve to the data is measured by summing the squared

vertical residuals. Fitting then boils down to minimizing that sum of

squared residuals. The result of this procedure is therefore often called

a “least squares fit”. Doing a least squares fit in MATLAB is relatively

straightforward, the only potentially tricky part is to keep track of your

parameters and the data.

For guidance have a look at the function goodness_of_fit.m that

calculates “the distance” between the data and the curve (6). The script

best_fit_and_plot.m minimizes that distance and returns a plot directly

comparing the best fit and the raw data.

Data fitting leads to best fit parameter values which can be purely

phenomenological or containing fundamental information about the system

under consideration. It depends whether the fitted mathematical curve

was motivated by an understanding of the underlying mechanism or not.

Also note that just because a curve fits the data very well the underlying

model does not need to be true! There is a famous saying attributed to the

mathematician John von Neumann who is reported to have said “with four

parameters I can fit an elephant, and with five I can make him wiggle his

trunk”. (Actually, this is not quite true, as you can see illustrated in figure

2).

The structure of the growth curve data is as follows: the data set

growth_curve_A contains two columns, with the first column containing

the time points of the OD measurements, and the second column

containing the OD measurements. The data sets growth_curve_B and

growth_curve_C contain fourteen columns, with the first seven columns

containing the time points of the OD measurements, and the second seven

columns containing the OD measurements. In order to read in data

sets use the command dlmread, e.g. for the first growth curve, type

gcdata=dlmread(’growth_curve_A.dat’). Then you can plot the growth

curve data by typing plot(gcdata(:,1),gcdata(:,2));.

CONTENTS 12

Figure 2. Mathematical biology at its best: the question “how many
parameters does it take to fit an elephant?” was settled in the seminal
1975 paper by J. Wel “Least squares fitting of an elephant”. (The answer is
thirty).

• Fit the solution defined by (6) to the data set

growth_curve_A to find best fit estimates for the

parameters b and d. Is there a clever graphical way to

alternatively read off good estimates for those parameters

from the growth curve data directly?

• Fit the solution to the data sets saved in growth_curves_B

and thereby determine parameter variability for data sets

obtained in identical growth conditions.

• Additionally fit the solution to the data sets saved in

growth_curves_C. Can you distinguish the mutants from

the WT cells in the previous data set?

CONTENTS 13

4. Polymer growth model / prion dynamics

Let’s have a look at a similar example describing the dynamics between two

species that includes a positive feedback loop. Biology is full of feedback

loops, and as an example we will analyze a simple system with feedback in

the following. Namely, a toy model of the dynamics of prion numbers of

the formation of polymers

Figure 3. Illustration of the reaction scheme underlying our toy model
of polymer formation. Note that this cartoon doesn’t completely specify
the process, because how exactly the concentration of P affects the rate of
polymerization is not specified!

Let’s say each molecule can be in one of two conformational states M

(monomer) or P (polymer) and that M is converted to P at a rate kp while

P can break apart to form M at a rate kd. P is assumed to enhance its own

production rate (a positive feedback), and let us for simplicity say that P

multiplicatively affects the rate at which M is converted to P. This reaction

scheme is illustrated in figure 3.

CONTENTS 14

Write out the two ordinary differential equations that describe

this system (one for M and one for P). Using the conservation

law that M + P = Mtot, reduce the system to one ordinary

differential equation in P (involving the constants kp, kd,Mtot

but not M). What are the stationary state values of P and are

they stable or unstable? Use the graphical method from earlier

and determined the stability of the fixed points by looking at

the right hand side f (P) of the differential equation. Sketch by

hand the stable stationary state value Pss and Mss (y-axis) versus

Mtot (x-axis). Imagine Mtot starts at zero and is synthesized

to a high level. Describe biologically what happens during

the process (continue to make the assumption that the system

reaches steady-state at each value of Mtot). This is a very

simplistic model. What features of real polymers (or prions!)

are we ignoring that should be included in a more complex but

realistic model?

5. Translation of mRNA

Say someone asks us to make quantitative predictions about the relation

between gene expression levels, mRNA levels, and protein levels in a cell.

In a simple scenario, we could say that the production rate of the protein is

proportional to the mRNA levels, and that mRNA is produced at a constant

rate (i.e. the gene is transcribed at a constant rate), while both protein

and mRNA are degraded with a constant rate per molecule. Calling the

concentration of mRNA x(t) and the concentration of the protein y(t), these

assumptions can be written in mathematical form

dx
dt
= bm − dmx

dy
dt
= bpx − dpy

. (7)

Realistic values for the production rates and degradation rates for a typ-

ical mRNA and protein pair in E. coli are bm = 1 min−1, dm = 1/2 min −1,

bp = 1 min−1, dm = 1/20 min −1.

CONTENTS 15

Let’s first look at the dynamics of mRNA, which is independent of the

protein levels.

Edit the original ODE solver M-file to integrate the x dynamics

of the above system starting from x0 = 0, i.e. find out how

the mRNA and protein levels rise after the gene is suddenly

switched on. Check graphically that the initial rise of mRNA

levels is linear and proportional to bm. Sketch the right hand

sied of the differential equation f (x) = bm − dmx and comment

on the stability of the fixed point.

Next look at the full two dimensional problem in which the production of

proteins depends on the instantaneous mRNA levels.

Extend the original ODE solver M-file and integrate the above

system starting from x0 = 0 and y0 = 0, i.e. find out how

the mRNA and protein levels rise after the gene is suddenly

switched on. Check graphically that the initial rise of mRNA

levels is linear and proportional to bm. Comment on the time

scales.

For guidance feel free to have a look at the functionmRNA_translation_ode.m

that defines the right hand side of (7) and the scriptscript_mRNA_translation.m

that does the numerical integration.

Many proteins in E. coli are degraded very slowly compared with the

corresponding mRNA molecules, implying that dp � dm. This allows us to

“separate time scales” in the dynamics of mRNA and proteins.

Compare the full result for protein levels with the one in which

you assume mRNA levels are immediately at their steady state.

Hint: assuming that the protein dynamics is much slower than the mRNA

dynamics (i.e. assuming that mRNA levels are immediately at their steady

state) the system simplifies to
dy
dt
= bp

bm

dm
− dpy . (8)

CONTENTS 16

5.1. Fixed point and response time

Determine the fixed point of system (7).

In order to determine whether the fixed point is stable or not we have

to linearize the system in two dimensions which involves calculating the

partial derivatives of the right hand side of the differential equation. For the

general two dimensional system of the form

dx
dt
= f (x, y)

dy
dt
= g(x, y)

,

the Jacobian matrix, which describes how small deviations from the fixed

point evolve, is given by ∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

ss

where ss indicates that the various partial derivatives are evaluated at the

stationary state fixed point. Whether a fixed point is stable or not is then

determined by whether the eigenvalues of the Jacobian matrix are negative

or not. Note that in multidimensional systems, fixed points can be stable

in one direction but unstable in another. The directions are given by the

eigenvectors of the Jacobian matrix. Eigenvalues and eigenvectors of a

matrix A can be found in MATLAB by typing [V D] = eig(A), which

returns a diagonal matrix D of eigenvalues and a full matrix V whose

columns are the corresponding eigenvectors.

Calculate the Jacobian matrix for system (7) and determine

whether the fixed point of is stable by analyzing the

eigenvalues of the Jacobian.

Note that there is a script in your work directoryscript_mRNA_translation_jacobian.m

that you can consult for guidance.

An important property of a system is its response time, i.e. the time it

takes to reach half its steady state level after starting from zero.

CONTENTS 17

Looking at the simplified protein level dynamics determine

its response time by numerically integrating (8). Play around

with the parameters to see how you can make the system more

responsive. After some numerical explorations can you “see”

analytically why the parameters affect the response time the

way they do?

5.2. Phase plane analysis

In order to get an understanding a system it is often instructive to visualize

the the dynamics of a system in a so called phase portrait. A phase portrait

(or phase plane) contains information about all possible trajectories x(t), y(t).

The nature of a phase portrait in which x versus y for various trajectories are

depicted can be found by the linear stability analysis described earlier, which

allowed you to find the stable and unstable directions in which trajectories

enter or leave the fixed point. Together with the nullclines, which are the

lines for which one of the derivatives vanishes, meaning that tangents to

trajectories are vertical (for dx
dt = 0) or horizontal (for dy

dt = 0), this information

often suffices to get a very good idea about the system’s dynamics.

Plot the trajectory you x(t), y(t) you determined earlier for a

starting point x(0) = y(0) = 0 in a phase plane. Play around

with other starting points and sample the phase portrait that

way. Have a look at the M-files dfield7.m and pplane7.m and

see whether you can use them to make a fully automated phase

diagram plot.

6. Mutual inhibition

It is not uncommon for cellular components to mutually inhibit each other.

Say, X inhibits the production of Y and Y inhibits the production of X, while

both X and Y are being degraded independently. Assuming that there is a

simple Michaelis-Menten type of inhibition this leads to the following set of

CONTENTS 18

ODEs describing the dynamics of teh concentrations of x and y.

dx
dt
=

K1

K1 + y
− d1x

dy
dt
=

K2

K2 + x
− d2y

.

First, make a prediction how many stable states the systems

has. Then determine the fixed points by sketching the

nullclines for which dx
dt = 0 and dy

dt = 0. Go back to the potential

well example earlier and think about the possibility of having

only two steady states, both of which are stable.

The above example was a particular case of mutual inhibition. In general

more complicated forms of the inhibition function can lead to multiple

stable states. Interestingly, there exists a general mathematical condition for

bistability that we can derive in the following.

Mathematically the general system for mutually inhibiting species can

be expressed that as

dx
dt
= f (y) − x

dy
dt
= g(x) − y

,

where f and g are some unspecified functions that are positive, decreasing

and bounded.

Depending on the exact form of the functions f and g the syestem can

have multiple steady states, as illustrated in figure 4

Another, often easier, way of looking at the system is to combine the

nullclines into x = f (g(x)). To have two stable steady states, we must have

three steady states in total – two stable ones separated by an unstable. The

fact that both f and g are bounded and decreasing means that there must

be at least one stable steady state (see figure 4). The function f (g(x)) crosses

the diagonal x from above for a stable steady state, and from below for

an unstable steady state. Examples of systems with one or two respective

stable stats are plotted in figure 5. The condition that f (g(x)) must cross the

CONTENTS 19

! "

! "

2

2

K
f y

K y

K
g x

K x

#

#

$
%

$
%

 (3.23)

We are interested in when the general system (3.22) displays bistability. These curves can look in many

different ways. Here are two examples:

You see that in the first case, there is a single steady state, while in the second case, there are three steady

states, two of which are stable. The arrows are drawn as follows: At the y-nullcline, the change in y is zero.

Above the y-nullcline, y is higher and degradation will dominate over synthesis (see the rate equations) so

the arrows point down, and vice versa below the nullcline. At the x-nullcline, x does not change. To the

right of the x-nullcline, where x is higher, degradation of x will dominate over synthesis (see the rate

equations) so the arrows point left, and vice versa to the left of the nullcline. Carrying out these arguments

in each area in the graph motivates the arrows.

Another, often easier, way of looking at the system is to combine the nullclines into

 ! "! "x f g x$ (3.24)

To have two stable steady states, we must again have three steady states totally – two stable ones separated

by an unstable. The fact that both f and g are bounded and decreasing means that there must be at least one

stable steady state (see figures). The function ! "! "f g x crosses the diagonal x from above for a stable

steady state, and from below for an unstable steady state. Plotting this for systems with one and two stable

steady states respectively gives:

 6

Figure 4. Mutual inhibition nullclines. Here are two specific examples
for the functions f and g. Displayed are the nullclines which are given
by f (y) − x and g(x) − y. You see that in the first case, there is a single
steady state, while in the second case, there are three steady states, two
of which are stable. The arrows are drawn as follows: At the y-nullcline,
the change in y is zero. Above the y-nullcline, y is higher and degradation
will dominate over synthesis (see the rate equations) so the arrows point
down, and vice versa below the nullcline. At the x-nullcline, x does not
change. To the right of the x-nullcline, where x is higher, degradation of x
will dominate over synthesis (see the rate equations) so the arrows point
left, and vice versa to the left of the nullcline. Carrying out these arguments
in each area in the graph motivates the arrows.

y=f(g(x))

x x

y y

y=f(g(x))

y=x y=x

In addition to actually being a steady state (conditions 1 & 2 below), crossing from below thus means that

the derivative of ! "! "f g x around the steady must be greater than the derivative of the diagonal. This

gives the following three conditions:

! "! "

1. 1

2. 1

3. 1 1

ss ss

ss ss

ssss

x f

y g

f g x f g

x y x

#

#

$ $ $% & % &' () '* +* + , -$ $ $, -

 (3.25)

where the last step uses the chain-rule of differentiation. Multiplying the last equation by the first two

gives

ln ln

1
ln ln

ss ss

ssss ssss ss

y f x g f g

f y g x y x

$ $ $ $% & % &% &) #)* +* + * +, -$ $ $ $, - , -
' (3.26)

You notice that we come back to something similar to the elasticities of the previous analyses – a

normalised measure for how sensitively the rates respond to changes in the concentrations. As we have

become accustomed to eye-balling sensitivities we can say directly that there are parameters for which

system (3.23) could be bistable, as without any explicit calculations we see that

2 0
ln ln

0 4
ln ln

2 0

ss

ss ss

ssss

ssss

y f

f y f g

y xx g

g x

.% &$
/ 0 0 1* +$ % &$ $1, - (0) 02 * $ $$, -% & 1/ 0 0* + 1$, - 3

+ (3.27)

The actual value depends on the parameters and can be calculated by differentiating f and g, and plugging

in the steady state values that comes from setting the differential equations to zero.

 7

Figure 5. Mutual inhibition combined nullcline. For multiple steady
states f (g(x)) must cross the diagonal from below, which implies that the
derivative of f (g(x)) must be greater than the derivative of the diagonal.

CONTENTS 20

diagonal from below leads to the following mathematical condition.

∂ f (g(x))
∂x

> 1⇒
(
∂ f
∂y

)
ss

(
∂g
∂x

)
ss

> 1 .

7. Discrete stochastic systems

The overwhelming majority of mathematical analyses of biological systems

are done within the framework of differential equations. That is because

the quantities of traditional physics such as position, speed, gravitational

pull are all readily described as continues variables with deterministic rates

of changes. The same is true for concentrations of chemicals within a well

stirred reaction container. But cells are not well stirred containers with high

concentrations of reagents! Genes, mRNA and proteins crucial for many

cellular processes can be present in very low numbers and their individual

production and degradation is the result of stochastic chemical events. This

next section will take the discreteness of events and their probabilistic nature

into account and formulate a mathematical framework to describe such

cellular processes. Although they can be hard to solve analytically there

exists a clever and very straightforward algorithm to simulate stochastic

processes using MATLAB with only a handful of lines of code.

Note that clearly there is not one right way of doing things. You

cannot say that “ODEs are better / worse than stochastic descriptions”!

In certain circumstances and limits one mathematical description might be

more appropriate than others, e.g. deterministic rate equations can follow

from a limit of the average behavior of stochastic systems as we will see in

the next section.

7.1. A memoryless elementary chemical reaction leads to a random walk

Consider a reaction that takes a molecule from state A to state B in a single

jump. The process could for example by be radioactive decay. Instead of

assuming that we have an astronomically large number of molecules in state

A such that the number of molecules A in state A follows
dA
dt
= −λA

CONTENTS 21

we want to analyze the system’s dynamics in the limit of small numbers,

where we cannot predict what the state of the molecule will be in the next

moment, but can only determine the probability with which a molecule is

still in state A.

The probability that the molecule is still in state A at time equals the

probability that it was in state A at time t minus the probability Pjump(t, t+dt)

that it jumped from A to B during the interval dt

P(A, t + dt) − P(A, t) = −Pjump(t, t + dt) .

Introducing the conditional probability Pjump(t, t+dt|A, t) and dividing both

sides by dt this becomes

P(A, t + dt) − P(A, t)
dt

= −
Pjump(t, t + dt|A, t)

dt
P(A, t) .

which in the limit of dt→ 0 becomes
dP(A, t)

dt
= −λP(A, t) ,

where λ is the instantaneous transition probability per unit time. Note that

in general the transition rate can depend on A. For a constant transition rate

λ such as for radioactive decay, the probability that a molecule is in state A

is given by

P(A, t) = e−λt ,

and the probability for the molecule to be in state B follows directly

P(B, t) = 1 − P(A, t) = 1 − e−λt︸ ︷︷ ︸
F(t)

,

where F(t) is the distribution function for the reaction time. This is perhaps

not obvious at first, but is both central to the following analysis and

straightforward: If the system is in state B at time t, then the reaction must

have occurred before time t. In other words, the probability of being in

state B at time t is the probability that the reaction time was t time-units or

less – which by definition is called the distribution function. This particular

distribution is called the exponential distribution and the corresponding

density function f (t) can be found by differentiation:

f (t) =
F(t)
dt
= λe−λt. (9)

CONTENTS 22

The exponential distribution is central to everything we will do in the

“stochastic section” because it describes the randomness associated with

an individual elementary chemical event. It is fairly straightforward to

show that the average time 〈t〉 and standard deviation σt of the exponential

distribution are given by

〈t〉 = σt =
1
λ

(10)

This means that the standard deviation in the waiting time at for each

reaction is as large as the average waiting time, which makes the overall

process rather erratic.

Plot the exponential distribution (9). “For extra credit” derive

its average and standard deviation as given in (10).

8. Bacterial growth

When introducing equation (1) for exponential growth of bacteria we have

followed good tradition and simply glanced over the fact that the motivation

for exponential growth was given on a microscopic rather than population

level. Assuming that cells divide every twenty minutes, but are randomized

in their timing, it is not immediately clear that for a large number of cells

the population should satisfy equation (2). So let’s derive the macroscopic

equation (2) from the underlying microscopic process. This will illustrate the

connection between deterministic rate equations and population averages

of stochastic systems.

8.1. Chemical master equation

As earlier in the memoryless, elementary reaction we can only discuss the

time evolution of probabilities and no longer the number of cells. Defining

P(x) as the probability of the systems to be in state x, i.e. that there are x cells,

we can formulate an equation for the time evolution of the probabilities P(x).

Note that’s really an infinite number of equations as x = 0, 1, 2, , . . . The birth

of a cell leads to a transition of the system from state s to the state x+ 1, and

CONTENTS 23

the birth rate in a population of x cells is simply bx, which we summarize

diagrammatically,

x bx > x + 1

That means that the probability P(x) can change in two ways: the system

can enter state x from state x − 1 if a birth event happened in state x − 1,

or the system can leave state x if a birth event happened in state x. Note

that these are the only two transitions that can directly affect the probability

of the system to be in state x. The rate of change of the probability P(x) is

therefore given by

dP(x)
dt

= b(x − 1)P(x − 1) − bxP(x) . (11)

This equation is called the chemical master equation (CME) because all

quantities of interest can in principle deduced from it. So let’s try to

understand how the population average 〈x〉 behaves. Multiplying (11) with

x and summing over all x leads to

d〈x〉
dt
= b

∞∑
x=0

x(x − 1)P(x − 1) − b
∞∑

x=0

x2P(x) , (12)

(Recall that x is just an index, the variables whose time evolution we are

trying to derive are the probabilities P(x).)

Before proceeding convince yourself that∑
x

x
dP(x)

dt
=

d〈x〉
dt

The right hand side of (12) simplifies after shifting the index in the first sum

and making use of the fact that P(x) = 0 for all x ≤ 0, as there cannot be a

negative number of cells, to

d〈x〉
dt
= b

∞∑
x=0

(x + 1)xP(x) − b
∞∑

x=0

x2P(x)

= b
∞∑

x=0

xP(x)

= b〈x〉 .

CONTENTS 24

Hence we see that if we take many populations of stochastically dividing

cells, the average over all populations (or the average over many reruns

of the same experiment) indeed follows the deterministic rate equation

introduced in (1). Note that the variability riance of the system

8.2. Exact simulation

Since in any given state of the system there is only one “reaction” that can

happen, all we need to do to simulate the stochastic process is to decide

when those reactions happen. But we already know how to do that! For a

given rateλwe showed that the waiting time until the next reaction happens

is exponentially distributed according to (9). So all we need to do is to draw

a sequence of random waiting times from the appropriate distribution. The

only (very) slight complication is that the reaction rate bx depends on the

state x of the system, which means that the distribution from which we have

to draw the random waiting times will be different from state to state. So in

order to simulate the stochastic replication of bacteria, starting with x cells,

we simply have to do the following steps

(i) The system is in state x at time t, which implies that the reaction rate is

given by bx

(ii) Draw a random reaction time ∆t according to the exponential

distribution bxe−bx∆t

(iii) Update the state of the system from x to x + 1 at time t + ∆t. Go back to

step (i) and repeat ad nauseam . . .

The only practical issue we might have to think about, is how to draw a

random reaction time from the appropriate distribution, given that MATLAB

is happy to give us a uniformly distributed random number between zero

and one. In order to get an appropriately random number we have to invert

the cumulative distribution function F(t) = 1− eλ∆t. Starting from a uniform

random number u between zero and one (as given by MATLAB), we get an

appropriately distributed ∆t, by calculating

∆t = −
1 − u
λ

.

CONTENTS 25

If the above is not entirely clear, convince yourself that by

graphically examining what it means to invert F(t), and by

thinking about how to calculate probabilities for t to lie in a

certain interval.

Write an M-file that iterates steps (i)-(iii) and simulates

the bacterial explosion system, starting from x = 10 until

x = 100, 1000, 105. Plot the time trace of x(t). Also play around

with different initial values x(0) and comment on the difference

between stochastic and deterministic time traces and how that

difference depends on the number of cells. By running a whole

bunch of simulations verify that the average of the stochastic

simulations satisfies 〈x〉 ∼ ebt.

If you get stuck, have a look at the scriptbacterial_explosion_stoch_sim.m

which runs the simulation and returns a vector t with the transition times,

which allows you to plot x(t). In order to plot the data appropriately, use

stairs(t,x) instead of the usual plot command, so the data points are not

interpolated, and the discrete steps remain discrete. Note that the above

simulation scheme is a special case of the famous Gillespie algorithm, that is

used to simulate stochastic systems. In the following sections we will study

systems that can undergo more than one reaction (in life there is death as

well as birth . . .) for a given state and thereby introduce the full Gillespie

algorithm.

9. Translation of mRNA

For simplicity look at the dynamics of mRNA translation in which the

dynamics of mRNA is fast compared with the protein dynamics, i.e. the

protein levels as defined by equation (8). Calling for simplicity b̄p = bpbm/dm,

we can write the dynamics of protein production and degradation as a birth

and death process with respective birth and death rates b̄p,dp. Schematically

we represent this birth and death process in which the number of proteins

y changes probabilistically as follows

CONTENTS 26

y b̄p > y + 1

y dp y
> y − 1

Note that the “rates” b̄p and dp are now transition probabilities per unit time

rather than deterministic rates.

In any given state the above system can undergo one of two possible

reactions: a death event could occur or a birth event could occur. We have

to extend the previous algorithm to account for that fact. The way that

can be done is straightforward. The reaction time will now be distributed

exponentially with a total reaction rate rT, which is the sum of all reactions

rate, i.e. rT = b̄+dpy. That will then be the appropriate random reaction time

for a system in state y to undergo a transition. Note that just determines

that a reaction has occurred at that time, but not which reaction! In order

to determine that we simply have to look at the relative rates between the

events to pick the possible reaction events with the correct probability. In

this case, there are only two reactions which means that given an event

as occurred after the given reaction time, a birth event has occurred with

probability b̄/rT and a death event has occurred with probability d/rT. Note

that the two probabilities add up to one as they should (one and only one

event as occurred). So the more general simulation scheme is given by

(i) The system is in state y at time t, which implies that the birth rate is

given by b̄, the death rate is given by dy and the total reaction rate is

given by rT = b̄ + dpy.

(ii) Draw a random reaction time ∆t according to the exponential

distribution rTe−rT∆t

(iii) Pick whether a birth or death event has occurred at ∆t with appropriate

relative probabilities. I.e. at time t+∆t update the system from y to y+1

with probability b̄/rT (a birth event has occurred) / update the system

from y to y − 1 with probability 1 − b̄/rT (a death event has occurred).

Go back to step (i) and repeat ad nauseam . . .

The above can be generalized to simulate an arbitrary number of species

undergoing any number of reactions. That general simulation, which is still

CONTENTS 27

reproducing the exact stochastic system as defined by an arbitrary CME, is

called the Gillespie algorithm.

Modify the previous M-file to this stochastic system and use

it to simulate the system starting from y = 0 molecules until

it has reached its “stationary state”. Play around with the

total number of simulated reactions from just a few to a

lot. Compare the resulting stochastic time series with the

deterministic result earlier. Simulate a bunch of stochastic

traces for the system starting at y = 0 and determine the average

behavior. Also determine the variability between the different

simulations. Would you expect to pick up such variability in

an experiment? Comment on what is and what is not constant

for the stochastic system at its “stationary state”.

For guidance have a look at mRNA_translation_approx_stoch_sim.m.

Looking into the possibility that proteins are produced in bursts we

introduce the following stochastic process

y b̄p/10
> y + 10

y dp y
> y − 1

Do the same as before and comment on the similarities and

differences. What is the variability of the protein level now?

Would you expect to pick it up in an experiment?

(The corresponding script ismRNA_translation_approx_stoch_sim_burst.m)

10. The prion model – a nonlinear system with feedback

Going back to the toy model of prion dynamics, it will be very instructive

to compare the solution of the deterministic ODE

dP
dt
= (kpMtot − kd)︸ ︷︷ ︸

kd,eff

P − kpP2 ,

with the dynamics of the stochastic system

CONTENTS 28

P kd,effP
> P + 1

P kpP2

> P − 1

Note that in contrast to the previous stochastic systems we simulated, this

one has transition rates that depend nonlinearly on the state variable.

Taking the following parameter values kd,eff = 40, kp = 2,

integrate the deterministic ODE and compare it with the

average dynamics of the stochastic system. Do you notice

anything weird? Is there a massive take home message here?

11. Microtubule dynamics

One of the most spectacular processes in biology is the process of cell

division. During mitosis microtubules catch the copied chromosome and

pull them towards the two opposing centrosomes. For that purpose

microtubules undergo a process called dynamic instability, in which they

are randomly switching between a growing and a shrinking state. During

mitosis that allows microtubules to find the chromosomes which they can

then attach to and pull towards the respective centrosome. (Hang out in

the vicinity of Tim Mitchison for the reminder of the course if you want to

know more about microtubule dynamics and mitosis. . .) In order to simulate

dynamically unstable microtubules you can simply write down the rate

equations for switching between the two states, and let the microtubules

grow or shrink deterministically in between switching events. For a given

state there is only one reaction that can happen (shrinking to growing or

growing to shrinking, respectively), hence you can make good use of the

previous code for the stochastic simulation of the bacterial growth explosion.

The only “complication” is to take into account that microtubules cannot

shrink below zero length. Simply assume that when a microtubule has

shrunk to zero it will switch into a growing state (this may seem weird

but experimentally this corresponds to simply switching to new growing

microtubule after the one you have followed has disappeared).

CONTENTS 29

Simulate the dynamics of microtubule growing with 8.6

µm/min and shrinking with 12.2 µm/min, given the following

switching rates: from growing to shrinking (catastrophe

rate) fcat = 3.3 min−1 from shrinking to growing (rescue rate)

fcat = 0.27 min−1. Plot example trajectories for the microtubule

length L with and without taking care of the fact that

microtubules cannot have negative length. Does it make sense

that in the latter case the microtubules shrink indefinitely on

average? What is the average microtubule length?

For guidance look at the script dynamic_instability_stoch_sim.m. Note

that you could now decide to analyze what the dynamics of dynamically

unstable microtubules looks like, taking into account that the process of

growing and shrinking itself is stochastic. This leads you to stochastic

processes whose rates are stochastic variables themselves. . . and with that

you have pretty much arrived at the forefront of ongoing research in this

field. Congratulations!

	Motivation
	A ``Hello World!'' differential equation
	Absolute and relative tolerance

	Bacterial growth curves
	Differential equation
	Fixed points
	Physics analogy

	Parameter estimation by data fitting

	Polymer growth model / prion dynamics
	Translation of mRNA
	Fixed point and response time
	Phase plane analysis

	Mutual inhibition
	Discrete stochastic systems
	A memoryless elementary chemical reaction leads to a random walk

	Bacterial growth
	Chemical master equation
	Exact simulation

	Translation of mRNA
	The prion model -- a nonlinear system with feedback
	Microtubule dynamics

